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ABSTRACT
Background Usefulness of propensity scores and regression models to balance potential confounders at treatment initiation may be limited
for newly introduced therapies with evolving use patterns.
Objectives To consider settings in which the disease risk score has theoretical advantages as a balancing score in comparative effectiveness
research because of stability of disease risk and the availability of ample historical data on outcomes in people treated before introduction of
the new therapy.
Methods We review the indications for and balancing properties of disease risk scores in the setting of evolving therapies and discuss al-
ternative approaches for estimation. We illustrate development of a disease risk score in the context of the introduction of atorvastatin and the
use of high-dose statin therapy beginning in 1997, based on data from 5668 older survivors of myocardial infarction who filled a statin pre-
scription within 30 days after discharge from 1995 until 2004. Theoretical considerations suggested development of a disease risk score
among nonusers of atorvastatin and high-dose statins during the period 1995–1997.
Results Observed risk of events increased from 11% to 35% across quintiles of the disease risk score, which had a C-statistic of 0.71. The
score allowed control of many potential confounders even during early follow-up with few study endpoints.
Conclusions Balancing on a disease risk score offers an attractive alternative to a propensity score in some settings such as newly marketed
drugs and provides an important axis for evaluation of potential effect modification. Joint consideration of propensity and disease risk scores
may be valuable. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Special challenges apply to the control of confounding
in studies of the safety and effectiveness of new and
evolving therapies. Many covariates can influence
choices among alternative therapies, and prescriber
preferences often evolve quickly during the period of
early experience with a specific drug or dose.1 Espe-
cially in early follow-up, there are typically relatively
few study outcomes.
This setting of evolving prescriber preferences and

relatively few outcomes can limit the use of both tradi-
tional multivariable models and propensity scores as

approaches to obtain unbiased estimates of relative
treatment effects. Whether one uses a case–control or
prospective study design to compare outcomes across
treatment groups, the number of potential confounders
included in a standard regression approach is limited
by the number of study endpoints. For example, reliable
estimation in both logistic regression and proportional
hazards models requires no more than one covariate
(counting separately interaction and higher-order terms)
for every 10 study outcomes.2 This can lead investiga-
tors to prioritize potential confounders and exclude
some of theoretical relevance from multivariable analy-
ses, leading to suboptimal confounder control.
Propensity scores are a valuable strategy to reduce

the dimension of potential confounding variables and
can be particularly useful when there are relatively
few study endpoints.3,4 However, with new and evolv-
ing therapies, a prescriber’s preference regarding the

*Correspondence to: R. J. Glynn, Division of Pharmacoepidemiology and
Pharmacoeconomics, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, 1620 Tremont Street, Boston, MA 02120,
USA. E-mail: rglynn@rics.bwh.harvard.edu

Copyright © 2012 John Wiley & Sons, Ltd.

pharmacoepidemiology and drug safety 2012; 21(S2): 138–147
Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pds.3231



characteristics of patients that indicate a specific drug
choice is likely to change, and at varying rates across
providers. Patients may also have varying attitudes
about use of new therapies. Such evolving relation-
ships of specific characteristics with treatment choices
imply absence of a sharply defined propensity score
and can lead investigators to consideration of time-
varying propensity scores.5 In addition, if some vari-
ables are related to treatment choice but not study
outcomes, these instruments are best not included in
the propensity score,6–8 but their identification in the
setting of newly evolving therapies is challenging.
With these challenges to multivariable analysis and

propensity score estimation, a disease risk score can
be a useful tool for confounder control. Here, we pro-
vide some background on the use of the disease risk
score in epidemiology, consider controversies regard-
ing its estimation, note the balancing properties of this
score, and illustrate the development of a disease
risk score with examples from the use of statins, in-
cluding high-intensity statin regimens, after myocar-
dial infarction.

OVERVIEW OF DISEASE RISK SCORES

Whereas a propensity score summarizes the way po-
tential risk factors differ between users of alternative
treatments to be compared, a disease risk score charac-
terizes the relationship of risk factors with the study
outcome. Summary measures of disease risk play a
prominent role in guidelines for drug use and the eval-
uation of possible effect measure modification of new
treatments or new indications for established therapies.
For example, 5-year risk of invasive breast cancer es-
timated from the Gail model critically influences use
of selective estrogen receptor modulators for risk
reduction.9,10 Similarly, guidelines for the use of sta-
tins in the primary prevention of cardiovascular dis-
ease incorporate the Framingham risk score as a key
determinant of treatment eligibility.11 Other summary
measures of disease severity that often direct treat-
ments include the Acute Physiology, Age, Chronic
Health Evaluation (APACHE) III score in intensive
care patients,12 the National Institutes of Health stroke
scale,13 and the Glasgow coma scale.14 Strengths of
these scales include their applicability in different
populations and periods.
When summary evidence suggests the value of a

treatment in a target population, a disease risk score
provides an important axis for evaluation of possibly
varying effects and for characterization of subgroup-
specific absolute treatment effects. For example, in
consideration of the use of statins for primary

prevention, treatment guidelines require specific infor-
mation on risks and benefits within categories of abso-
lute disease risk.15

Although disease risk scores with prespecified
weights are a useful tool for confounder adjustment
in studies of treatment effectiveness and safety, they
are seldom sufficient to completely control for poten-
tial confounding. In the use of administrative data,
the predictive ability of available comorbidity scores
such as those developed by Charlson et al.16 and Elix-
hauser et al.17 can be enhanced through estimation of
weights for their components within the study popula-
tion of interest.18,19 However, these risk scores are
generally considered to be only one component of a
strategy to control confounding, rather than a self-
sufficient approach. Even when total mortality is the
study endpoint, administrative datasets generally con-
tain additional determinants of death that are not
included in available scores. A wider view of such po-
tential determinants is generally required for adequate
confounder adjustment, compared with the perspective
provided by construction of a parsimonious comorbid-
ity index. As in the construction of a propensity
score,20 the disease risk score should err on the side
of inclusion of variables that show even a modest asso-
ciation with the outcome.
The notion that a study-specific disease risk score

alone can control confounding and aid in causal infer-
ence has a substantial history. Peters21 and Belson22

proposed a two-step approach for confounder adjust-
ment with the first-stage development of a model to
predict the outcome among the unexposed, followed
by adjustment for the predicted outcome in a compar-
ison between the exposed and unexposed. Cochran23

described the conditions under which this Peters–
Belson approach is preferable to multivariable adjust-
ment for causal inference. In particular, this approach
has theoretical advantages in the presence of effect
measure modification across the dimension of out-
come risk in the unexposed and has extensive applica-
tions in economics and health services research.24

In considering the value of alternative summary
confounder scores to reveal potential problems with a
multivariable analysis of the effects of an exposure,
Miettinen recommended the use of a form of disease
risk score.25 Specifically, in the setting of a case–
control study, he recommended inclusion of the expo-
sure status and all potential confounding variables in a
multivariable model to predict the study outcome.
Then, each subject’s predicted risk was obtained by
setting the exposure status to zero, and stratified anal-
ysis was used to evaluate the relationship of the expo-
sure and outcome.
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An important theoretical development in under-
standing the disease risk score is an appreciation
of its balancing property as described by Hansen,
which parallels the balancing property of the propen-
sity score.26 Specifically, with a properly developed
propensity score PS(X) to summarize the way a vec-
tor of covariates X predicts treatment assignment,
Rosenbaum and Rubin showed that if sufficiently
large groups of exposed and unexposed subjects with
the same value of PS(X) are identified, these two
groups will have the same distributions of all compo-
nents of X.27,28 This implies that stratification or
matching on the propensity score can yield a better
exposed/unexposed balance of these measured covari-
ates than would be obtained by randomized treatment
assignment.29

In parallel, a well-formed disease risk score DR(X)
has the property that the potential outcome if untreated
is independent of covariates X, given DR(X). Note that
this is a balance of disease risks, as distinct from the
balance of treatment propensities provided by the pro-
pensity score. This prognostic balance can only be
evaluated in the untreated. Furthermore, as Hansen
pointed out, its evaluation in the untreated subjects
within a population including treated and untreated
subjects requires an assumption: that the potential out-
come if untreated is independent of the actual treat-
ment assignment given X.26 This is an assumption of
no unmeasured confounders outside X. Table 1 sum-
marizes the aspects of study design that can influence
the relative utility of disease risk scores and propensity
scores.

ALTERNATIVE ESTIMATION STRATEGIES FOR
THE DISEASE RISK SCORE

The above discussion indicates use of three distinct
populations to develop a disease risk score: (i) in an
alternative data set or in a period prior to the current
study, perhaps before introduction of a new therapy;
(ii) in the study population, but based on estimation
of disease risk in the unexposed group only, akin to
the Peters–Belson method; and (iii) in the entire study
population, based on a model including indicators of
exposure status, and then set this exposure status to
zero for an individual’s predicted risk, as suggested
by Miettinen. Each approach seeks to estimate a dis-
ease risk score that will be the most representative of
the study population, and each has both strengths and
limitations.
Estimation of a disease risk score using all subjects

in the study population, based on a model with an in-
dicator for exposure status, benefits from the ready
availability of the data set and its use of a larger sam-
ple size than does estimation restricted to the unex-
posed, to yield potentially more reliable estimates of
disease risk under the assumption of a correct model
form. Several simulation studies have found that strat-
ification on a disease risk score obtained in this way
(according to the suggestion of Miettinen) performs
comparably to both propensity score stratification
and multivariable analysis, as long as covariates are
not too highly correlated with exposure.30–33 Further
within the context of the scenarios examined, this full-
cohort disease risk score can sometimes outperform a

Table 1. Study design features that influence the value or feasibility of disease risk scores (DRS) or propensity scores (PS)

Study feature or analytic goal Impact on DRS Impact on PS

Ample historical data (before new
treatment)

Very useful for DRS development Informs variable selection, but not generally used in
estimation

Rare outcome Greatly limits DRS development and usefulness PS particularly valuable, but limited ability to exclude
possible instrumental variables

Rare exposure Little impact on DRS Limits estimation of PS
Rapidly evolving treatment
indications

Little impact on DRS Challenges ability to fit PS and suggests time interactions
or time-specific PS

Interest in >1 outcome/>2 exposures DRS may be particularly useful with >2
exposures/require multiple DRS for multiple outcomes

Single PS useful for multiple outcomes with attention to
risk factors for all outcomes in PS development

Interest in effect measure
modification

Disease risk is a natural scale for evaluation Although less natural than the risk scale, a potentially
principled summary scale

Balance disease risk across covariates DRS is a natural scale for stratification/matching Stratification/matching on PS may provide secondary
balance

Balance treatment preference across
covariates

Stratification/matching on DRS may provide
secondary balance

PS is a natural scale for stratification/matching

Exclude (trim) subjects in one
treatment group without comparable,
alternatively treated comparators

Potentially valuable to exclude high- or low-risk
subjects without comparators

Potentially valuable to exclude subjects in PS tails
without comparators

Relevance of the C-statistic A high C-statistic provides some evidence of good
performance in discriminating subjects who will versus
those who will not develop the outcome

A high C-statistic can indicate clearly different indications
for use of the compared treatments with possibly
substantial areas of nonoverlap in PS distributions
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disease risk score estimated in the unexposed subjects
only.33 However, as pointed out by Hansen, the validity
of the disease risk score estimated in this way is sensi-
tive to model form, especially the assumption of a uni-
form treatment effect across categories of disease risk.
Even modest treatment effect heterogeneity can induce
bias in the overall treatment effect with this approach. If
the treatment groups differ substantially on important
covariates (which is akin to a clear distinction of treat-
ment groups by means of a propensity score), these
concerns are enhanced. Furthermore, inclusion of the
exposure effect in the estimation of the disease risk
score limits its value as a balancing score, as also dis-
cussed by Hansen.
Estimation of the disease risk score among unex-

posed subjects in the study population is also readily
implementable, makes fewer assumptions than stan-
dard approaches that include exposed subjects, and
yields a balancing score with desirable theoretical
properties. However, reliable estimation of the model
is a particular challenge in settings with relatively
few outcomes, and these are expected among the un-
exposed subjects in the early monitoring period for a
new therapy. Furthermore, if the disease risk score
is used to form strata for estimation of treatment
effects within levels of disease risk, the overfitting of
the model under this approach tends to overestimate
treatment benefits in the high-risk group and under-
estimate treatment harms in the low-risk group, which
substantially limits the value of the score as an axis
upon which to evaluate potential effect measure
modification.
Furthermore, if the estimated disease risk score is

strongly correlated with exposure status, the biases
found by Pike and colleagues34 to be associated with
stratification by the disease risk score estimated by
the approach of Miettinen also apply to disease risk
scores estimated in the unexposed.26 These concerns
have probably contributed to the relatively infrequent
use of disease risk scores in pharmacoepidemiology.35

However, if exposed and unexposed subjects differ
substantially on important determinants of disease
risk, such that the shared support of risk factor distri-
butions is limited, then valid comparison of treatments
in an observational setting becomes less feasible,36,37

and stratification on either a risk or propensity score
is a useful way to identify such nonoverlap. Rather
than a limitation, the ready ability to identify the kinds
of subjects who almost always receive one specific
treatment, and who thus should probably not be in-
cluded in an analysis of comparative effectiveness, is
a strength of both propensity score and disease risk
score methods in pharmacoepidemiology.35,36,38

The disease risk score can also be estimated
with data from a period prior to the study period
or from a separate population. However, one diffi-
culty with estimation in a separate population is
that covariate assessments may differ from those
in the study population. In the context of evalua-
tion of a new therapy, the period before its intro-
duction in the target study population may be
useful. The reasoning behind this approach is that
in times of evolving therapies, the disease risk in
the population may be more stable than the pro-
pensity score. We illustrate this approach in the
examples that follow.

EXAMPLE STUDY: INTRODUCTION OF A NEW
STATIN OR MORE INTENSE STATIN THERAPY

We used data on statin therapy in patients after
myocardial infarction to illustrate the development
of a disease risk score in the context of new and
evolving therapies. Large-scale randomized trials
conducted between 1994 and 1998 demonstrated
the value of statin therapy after myocardial infarc-
tion for prevention of recurrent myocardial infarc-
tion, stroke, and cardiovascular death.39–41 Later
trials showed that higher statin doses yielded greater
risk reductions in this population.42,43 We consid-
ered use of a disease risk score to evaluate the rela-
tive effectiveness of atorvastatin (Lipitor, the first
high-intensity statin marketed in the USA), begin-
ning with its first availability at the beginning of
1997; we also considered the efficacy of more
intense statin therapy (defined according to the algo-
rithm of Choudhry et al.44), which also was seldom
used prior to this time.
We studied 5668 enrollees aged 65–100 years in ei-

ther New Jersey’s or Pennsylvania’s state-sponsored
pharmacy assistance program who survived a myocar-
dial infarction and filled a statin prescription within
30 days after discharge between 1 January 1995 and
31 December 2004.45,46 Figure 1 shows the strong time
trend in the percentage of such first post-myocardial
infarction prescriptions that were either atorvastatin or
a high-dose statin. The efficacy endpoint was the com-
posite including recurrent myocardial infarction,
stroke, or death within 1 year after statin initiation.
The analytic challenge was to develop an approach to
control for multiple potential confounding variables
that was applicable even during the early years of use
of atorvastatin and high-dose statin therapy (i.e., 1997
and 1998) and consistent with confounder control in
later experience. The study was approved by the insti-
tutional review board of Partners Healthcare.
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The principles discussed earlier suggested develop-
ment of a disease risk score based on the unexposed
individuals in the period just before exposure avail-
ability. Thus, we used data from individuals who used
statins other than atorvastatin or high-dose statins after
myocardial infarction in 1995 and 1996, we but also
included the individuals with exposure to these drugs
following index myocardial infarction in 1997. We felt
that the indications for exposure were still evolving
and uncertain in that year, and the additional data
would improve the reliability of the risk score. We
used a logistic regression model to develop a disease
risk score based on 826 patients who initiated statin
therapy other than atorvastatin or high-dose statin,
among whom 203 had recurrent myocardial infarction,
stroke, or death within a year after statin initiation.
Variables included in the disease risk score model
were demographic characteristics, indicators of spe-
cific diseases encoded in medical encounters during
the preceding year, summary measures of comorbidity
(Charlson index and numbers of different generic
drugs with prescription filled in the past year), and
circumstances of the index hospitalization including
angiography and duration of stay.
Table 2 shows the 20 variables included in the

disease risk score; their prevalence or median in the
population used to develop the score; and their multi-
variable relationship with recurrent myocardial infarc-
tion, stroke, or death. Variables associated with

increased risk of the composite outcome were older
age, Black race, history of heart failure, and higher
Charlson score, whereas angiography during the index
hospitalization and a diagnosis of hypertension were
associated with reduced risk. Overall, the disease risk

Figure 1. Prevalence of atorvastatin and high-dose statin use (by 6-month periods from 1995–2004)

Table 2. Baseline characteristics and contribution to the risk score: 826
initiators of a low-dose, non-atorvastatin statin post-MI from 1995 until
1997, 203 of whom had recurrent MI or stroke or died within 1 year

Variable % Odds ratio 95%CI

Age, per year, median (IQR) 76 (71–80) 1.05 1.02–1.08
Male 23.7 1.2 0.8–1.8
Black race 5.8 3.1 1.6–6.1
Other race 1.3 1.0 0.2–5.2
New Jersey resident 32.8 1.1 0.8–1.6
Congestive heart failure 54.0 1.7 1.1–2.4
Peripheral vascular disease 26.0 1.3 0.9–1.9
Chronic kidney disease 14.8 1.1 0.7–1.7
Hypertension 74.9 0.7 0.5–1.0
Diabetes 47.5 0.8 0.5–1.1
Prior myocardial infarction 7.5 0.9 0.5–1.7
Cerebrovascular disease 29.1 0.9 0.6–1.3
Prior hospital days, per day,
median (IQR)

0 (0–3) 1.00 0.98–1.03

Charlson score, per point,
median (IQR)

2 (1–3) 1.2 1.1–1.4

8–13 different medications 42.9 0.9 0.6–1.3
≥14 different medications 19.5 1.5 0.9–2.5
MI hospitalization 5–6 days 27.4 1.2 0.7–2.2
MI hospitalization 7–9 days 28.0 1.4 0.8–2.6
MI hospitalization ≥10 days 30.1 1.5 0.8–2.7
Angiography 55.3 0.6 0.4–0.8

Note. IQR, interquartile range; MI, myocardial infarction.
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score model had a C-statistic of 0.71 to predict 1-year
risk of recurrent myocardial infarction, stroke, or death
from any cause.
Based on this model, the predicted disease risk in

statin initiators from 1997 through 2005 had a wide
range, with mean predicted probability of 0.272 in
atorvastatin initiators, 0.277 in initiators of other sta-
tins, 0.272 in initiators of high-dose statins, and
0.276 in initiators of lower-dose statins (Figures 2
and 3). Distributions of disease risk scores overlapped
broadly and were similarly shaped across treatment
groups. The slightly lower mean disease risk scores
in the atorvastatin and high-dose statin groups
reflected younger average ages, higher rates of angi-
ography, and decreased prevalence of an index hospi-
talization lasting 10 or more days (Table 3).

EXAMPLE RESULTS

Several approaches are possible in the use of disease
risk scores for confounder control in comparative
effectiveness research, including matching exposure
groups on risk levels, stratified analysis, and multivari-
ate adjustment. Table 4 shows the impact of adjustment
for the estimated disease risk score in comparisons of
atorvastatin versus other statin regimens and of high
versus lower doses of statins. Adjustment for disease
risk as a continuous variable led to slight changes of
crude estimates of 7%–8% reductions in the odds of

recurrent myocardial infarction, stroke, or death asso-
ciated with atorvastatin treatment or treatment with
high-dose statins.
The disease risk score may have particular utility

for the control of confounding in early follow-up after
introduction of a new therapy. Parallel logistic regres-
sion analyses controlling for disease risk score and
restricted to the 897 individuals who initiated statin
therapy after myocardial infarction during the 2-year
period 1997–1998 found that users of atorvastatin
had somewhat lower risk relative to users of other sta-
tins (odds ratio, 0.71; 95%CI, 0.5–1.0) and that users
of high-dose statins had reduced risk relative to users
of lower-dose statin therapy (odds ratio, 0.57; 95%
CI, 0.3–1.1).
Stratification on the disease risk score provides a

straightforward approach to evaluate possible effect
measure modification across levels of disease risk
(Table 5). Observed risk of the composite outcome
ranged across quintiles of the disease score from
12.6% to 31.4% in atorvastatin-treated patients and
from 11.8% to 32.4% in patients treated with high-
dose statins. Generally, odds ratios associated with
atorvastatin therapy as well as with high-dose statin
therapy tended toward greater reductions in higher-
risk individuals, although confidence intervals were
wide and broadly overlapping.
We also considered development of propensity

scores as a strategy to control confounding in the

Figure 2. Distribution of the disease risk score. Comparison of atorvastatin users and nonusers
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evaluation of relationships of atorvastatin and high-
dose statin therapy with outcomes in these data. Chal-
lenges to the use of propensity scores in this setting
included uncertainty about evolving prescriber prefer-
ences in the face of new evidence on benefits of these
therapies during the study period and small numbers of
individuals initiating high-dose statin therapy during
early follow-up (Figure 1), which limited the ability
to estimate period-specific propensity scores with all
covariates included. In particular, with only 68 initia-
tors of high-dose statins during the years 1997–1998,
a logistic model predicting this treatment and includ-
ing all 20 covariates showed evidence of overfitting
and had coefficients with large differences from the

estimates obtained in a model based on data from
1999–2004. In light of the small number of initiators of
high-dose statins during early follow-up, it was unclear
whether apparent differences from propensity score esti-
mates in the later follow-up represented sampling vari-
ability or true changes in treatment preferences.

DISCUSSION

In comparative effectiveness and safety analyses with
evolving therapies, the disease risk score may be a
valuable tool to balance important covariates across
treatment groups, to identify types of subjects with

Figure 3. Distribution of the disease risk score. Comparison of high- versus lower-dose statin users

Table 3. Comparison of baseline characteristics related to disease risk in 5169 statin initiators post-myocardial infarction between 1997 and 2005

Atorvastatin Non-atorvastatin High-dose statin Lower-dose statin

Variable, n 1851 3318 922 4247
Age, years, mean (SD) 78.2 (6.6) 78.7 (6.5) 77.7 (6.5) 78.7 (6.5)
Male, % 24.3 26.4 24.8 25.8
Black race, % 5.6 5.8 6.5 5.5
Angiography, % 62.9 61.2 63.9 61.3
Hypertension, % 80.4 81.0 83.1 80.3
Congestive heart failure, % 59.9 59.9 61.4 59.5
Peripheral vascular disease, % 27.1 27.3 28.7 26.9
Diabetes, % 51.5 49.1 55.3 48.8
Charlson score, mean (SD) 2.6 (2.0) 2.5 (2.0) 2.7 (2.1) 2.5 (2.0)
Myocardial infarction hospitalization ≥10 days, % 22.5 25.4 21.4 25.1
≥14 different medications, % 29.9 28.3 32.0 28.2
Disease risk score, mean (SD) 27.2 (16.6) 27.7 (16.8) 27.2 (16.7) 27.6 (16.7)

SD, standard deviation.
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nonoverlap between treatment groups where valid
comparisons of comparative effects are impossible,
and to evaluate potential treatment effect measure
modification.
Compared with propensity scores, disease risk

scores are far less commonly used and have more
theoretical shortcomings for comparative effective-
ness research. In particular, although both approaches
share the useful ability to reduce to one the dimen-
sion of potential confounders, balance with respect
to the disease risk score can be evaluated only in
the untreated, and estimation of this score within
the study population is potentially problematic.
Nonetheless, in the setting of early evaluation of
evolving therapies, where reduction of the dimension
of the confounder space is particularly desirable, no
coherent propensity score may exist because of
changing patient and provider preferences. The dis-
ease risk score is likely to be more stable over time,
and the work required to estimate this score based
on recent history in the health system under study
may improve estimates of comparative effectiveness.
Furthermore, although the disease risk score is less
useful in settings with rare outcomes where reliable
multivariable risk prediction is problematic, the risk
score approach has advantages in studies of multiple

exposures such as our consideration of atorvastatin
and high-dose statin therapy, where a single score is
applicable to all exposure categories.47

Another advantage of the disease risk score is its util-
ity as a scale for arguably the most important dimension
in the evaluation of possible effect measure modifica-
tion. Absolute disease risk plays a critical role in many
treatment decisions. Stratification on a disease risk
score provides a transparent approach to compare abso-
lute and relative treatment effects on this important axis.
However, one need not choose between a disease risk

score and a propensity score approach to balance poten-
tial confounders. As an approach to match subjects in
alternative treatment groups, one can minimize the dis-
tance in both the disease risk and propensity score
dimensions. Neither must one weight the distances in
these two dimensions equally. With common exposures
and fewer data on outcomes, one can emphasize the dis-
tance on the propensity score dimension via over-
weighting. Conversely, with new or rare treatments,
one can emphasize the disease risk score dimension.
In summary, we believe that the disease risk score is

a useful tool with unique strengths for comparative
safety and effectiveness research on new and evolving
therapies. Evidence on comparative effectiveness of
medications is particularly needed shortly after market
approval, when insurance coverage decisions must be
made. Products marketed with evidence of superior
benefits or more favorable safety profiles, as compared
with existing alternatives, will likely receive positive
coverage conditions and therefore experience rapid
uptake in the marketplace. Insurers seek timely com-
parative data to avoid fast and diffuse adoption of less
effective or possibly harmful drugs; once prescribing
patterns are established, they are difficult to change,
even in the face of compelling comparative effective-
ness evidence.

Table 4. Crude and adjusted relative odds of recurrent myocardial infarc-
tion, stroke, or death within 1 year after initiation of statins among myocar-
dial infarction survivors, 1997–2005; 5189 statin initiators, 1851 with
atorvastatin, and 922 with high-dose statins

Odds ratio 95%CI

Model: atorvastatin versus other
Crude estimate 0.92 0.80–1.05
Adjusted for disease risk 0.93 0.81–1.07
Model: high dose versus other
Crude estimate 0.93 0.78–1.11
Adjusted for disease risk 0.94 0.79–1.12

Table 5. Relationship of atorvastatin use and use of high-dose statins with risk of recurrent myocardial infarction, stroke, or death within 1 year, stratified by
quintiles of the disease risk score

Predicted risk Observed Atorvastatin Other statin Odds ratio (95%CI)

Events/n n, % Events, risk n, % Events, risk

3.5–12.7 116/1033 381, 36.9 48, 12.6 652, 63.1 68, 10.4 1.21 (0.9–1.7)
12.7–19.8 176/1034 375, 36.3 59, 15.7 659, 63.7 117, 17.8 0.89 (0.7–1.2)
19.8–28.3 216/1034 369, 35.7 71, 19.2 665, 64.3 145, 21.8 0.88 (0.7–1.1)
28.3–41.3 292/1034 366, 35.4 108, 29.5 668, 64.6 184, 27.5 1.07 (0.9–1.3)
41.4–94.0 363/1034 360, 34.8 113, 31.4 674, 65.2 250, 37.1 0.85 (0.7–1.0)

High-dose statin Low-dose statin
3.5–12.7 116/1033 195, 18.9 23, 11.8 838, 81.1 93, 11.1 1.06 (0.7–1.6)
12.7–19.8 176/1034 180, 17.4 36, 20.0 854, 82.6 140, 16.4 1.22 (0.9–1.7)
19.8–28.3 216/1034 191, 18.5 36, 18.9 843, 81.5 180, 21.4 0.88 (0.6–1.2)
28.3–41.3 292/1034 177, 17.1 45, 25.4 857, 82.9 247, 28.8 0.88 (0.7–1.2)
41.4–94.0 363/1034 179, 17.3 58, 32.4 855, 82.7 305, 35.7 0.91 (0.7–1.1)
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Initiatives such as the Sentinel System of the Food
and Drug Administration reflect a heightened interest
in early identification of adverse effects and benefits
of drugs and new doses as soon after marketing as
possible. Joint consideration of both propensity and
disease risk scores for new therapeutics has the poten-
tial to improve estimates of comparative effectiveness.
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KEY POINTS

• Use of propensity scores or multivariable models
to control confounding in the evaluation of risks
and benefits of new or evolving therapies can be
problematic due to evolving indications and
small numbers of outcomes in early follow-up.

• Availability of data on confounders and the study
outcome before introduction of the new therapy
allows for development of a disease risk score
with important balancing properties.

• The disease risk score can help identify the range
of alternatively treated subjects in whom evalua-
tion of comparative effectiveness and safety are
possible, and provides an important dimension
for evaluation of effect measure modification.
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