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Abstract

Background: In register‐based pharmacoepidemiological studies, each day of follow‐up is

usually categorized either as exposed or unexposed. However, there is an underlying continuous

probability of exposure, and by insisting on a dichotomy, researchers unwillingly force a

nondifferential misclassification into their analyses. We have recently developed a model

whereby probability of exposure can be modeled, and we tested this on an empirical case of

nonsteroidal anti‐inflammatory drug (NSAID)‐induced upper gastrointestinal bleeding (UGIB).

Methods: We used a case‐controls data set, consisting of 3568 cases of severe UGIB and

35 552 matched controls. Exposure to NSAID was based on 3 different conventional dichoto-

mous measures. In addition, we tested 3 probabilistic exposure measures, a simple univariate

backward‐recurrence model, a “full” multivariable model, and a “reduced” multivariable model.

Odds ratios (ORs) and 95% confidence intervals for the association between NSAID use and

UGIB were calculated by conditional logistic regression, while adjusting for preselected

confounders.

Results: Compared to the conventional dichotomous exposure measures, the probabilistic

exposure measures generated adjusted ORs in the upper range (4.37‐4.75) while at the same time

having the most narrow confidence intervals (ratio between upper and lower confidence limit,

1.46‐1.50). Some ORs generated by conventional measures were higher than the probabilistic

ORs, but only when the assumed period of intake was unrealistically short.

Conclusion: The pattern of high ORs and narrow confidence intervals in probabilistic

exposure measures is compatible with less nondifferential misclassification of exposure than in

a dichotomous exposure model. Probabilistic exposure measures appear to be an attractive

alternative to conventional exposure measures.
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1 | INTRODUCTION

In register‐based studies of drug effects, all days of follow‐up are

typically classified as either exposed or unexposed, depending on some

rule or algorithm that transforms the prescription data into a temporal

exposure pattern. The key to this classification is usually the

prescription's recency; days long after the latest prescription are classi-

fied as unexposed, while days soon after this prescription are classified

as exposed. By insisting on classifying all days as either exposed or

unexposed, researchers ignore the fact that the prescription data

reflect an underlying continuous probability of exposure, not a

dichotomy. Inadvertently, researchers thereby force an exposure

misclassification into their analysis, classifying a low probability of

treatment as nonexposure and a high probability of treatment as

exposure. These misclassifications are likely to be nondifferential, thus

leading to an attenuation of the association.
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Based on theory for renewal processes, we have recently pro-

posed a method whereby the probability of (still) being treated can

be modeled as a function of the distance from the latest prescription.1

We have extended the method to also include multivariable modeling

such that the probability function may depend on covariates, such as

age, sex, package size, coprescribed medication, and comorbidity.2

We propose that the problem of misclassification from using a

dichotomous exposure measure can be attenuated by using such a

continuous exposure probability as main exposure variable in the

regressions. An intuitive rationale is that the odds ratio (OR) associated

with a continuous variable is interpreted as the OR associated with an

increment of one unit. In this context, it corresponds to the OR

comparing a definitely exposed person (probability of exposure, 1) with

a definitely unexposed person (probability of exposure, 0).

The aim of this paper is to perform regression on treatment

probability and compare its output to results from using conventional

approaches to assigning dichotomous exposure status from registry

data. As our motivating example, we have chosen the association

between traditional nonsteroidal anti‐inflammatory drugs (NSAIDs)

and upper gastrointestinal bleeding (UGIB). Treatment with NSAID is

characterized by a mixed episodic and continuous treatment pattern

and by having a well‐established and fairly strong association with UGIB.

2 | METHODS

We analyzed a case‐control data set of patients with severe upper

gastrointestinal bleeding, using 3 different types of conventional

binary exposure methods and 3 different continuous exposure

probability models. As an aid in interpretation of the results, we

analyzed the time dependency of the OR, relative to the timing of

the latest NSAID prescription before the index date.

2.1 | Cases and controls

We used a case material described in detail in previous publications.3,4

In brief, our source population was the residents of Funen County

during 1995 to 2006. We included as potential cases all subjects

admitted with a diagnosis compatible with UGIB (n = 12 607). These

underwent a manual review of all discharge summaries. During the

review, the study group was blinded to the exposure status of

potential cases. Each case was assigned an index date defined as the

first registered date of an UGIB diagnosis.

Controls were selected by a risk‐set sampling strategy, ie, for each

case, we randomly selected 10 controls among the subjects in our

source population who matched the case by sex and birth year.

Controls were assigned an index date identical to the outcome defining

date of the corresponding case. We allowed that cases could be

selected as controls before they had their case‐defining event.

Thereby, the calculated OR is an unbiased estimate of the incidence

rate ratio that would have emerged from a cohort study, based on

the same source population.

We required that both cases and controls had been residents of

Funen for at least 1 year on the index date. As some of the very old

cases had less than 10 eligible controls, the final control to case ratio

deviated slightly from 10:1.

2.2 | Exposure

For all conventional, dichotomous exposure definitions, exposure

started on the day of dispensing and lasted until the end of the

prescription duration, unless another prescription occurred before, in

which case the exposure clock was reset. For continuous exposure

probability, we assumed that exposure started on the day of

dispensing and restarted the exposure probability function with each

new prescription, regardless of when it occurred.

The following exposure algorithms were used:

Dichotomous exposure

• Fixed window: All prescriptions were assigned durations of

30 days. Analyses with 60, 90, and 120 days were used as well.

• Fixed daily amount: All prescriptions duration were calculated

under the assumption of a daily intake of 0.2 defined daily doses

(DDD).5 Analyses using 0.5, 1.0, and 1.5 DDD/day were used as

well. The number of days assigned to each prescription was thus

the amount dispensed with that prescription, measured in DDD,

and divided by 0.2, 0.5, 1.0, and 1.5, respectively.

• Simple waiting time distribution (WTD) model: TheWTDwas used

to model the prescription duration, using the method described by

Pottegård and Hallas.6 The WTD percentile was set to 0.75 with

additional analyses using 0.80, 0.85, and 0.90.

Continuous exposure probability

• A single, one‐size‐fits‐all probability function for all NSAID dis-

pensings, without consideration of covariates: In this model, we

estimated a single reverse WTD for all the controls with the index

date as the right‐hand end point of the observation window. We

used the prior year (365 days) as observation window (thereby

ignoring all controls without an NSAID dispensing during the year

before their index date). Note that the observation window does

not occur as a single period in calendar time, but rather is located

relative to the index date. Since the index date for controls can be

considered random with respect to dispensing dates, their time

KEY POINTS

• In register‐based pharmacoepidemiological studies,

the probability of being treated at a certain point in time is

dependent on the time passed since the last prescription

for the drug. This probability can be modelled.

• Researchers introduce misclassification by classifying all

follow-up as either exposed or unexposed, thereby

ignoring an underlying continuous treatment probability.

• We demonstrate how the modelled probability can be

used as exposure in multivariable regression.

• Our results suggest that avoiding misclassification with

use of continuous treatment probability is statistically

more efficient than conventional methods.
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from last dispensing to the index date will follow a reverse WTD.

Based on obtained estimates and the date of their last NSAID dis-

pensing, we calculated the probability of being exposed on their

index date for all controls and cases. If a subject did not have

any observed NSAID dispensing, we set their probability of being

exposed to zero.

The rationale for choosing controls for modeling continuous expo-

sure probability was that for cases, the outcomes could potentially

interfere with the pattern of prescription renewal, for example, by

truncating treatment episodes.

• A tailored multivariable probability function. We used the same

approach as above, except that we estimated parameters of the

reverse WTD, which depended on the following covariates: age,

sex, quantity dispensed (in DDD), use of ibuprofene (the dominant

NSAID), concurrent use of proton pump inhibitors, a diagnosis of

rheumatoid arthritis, psoriasis arthritis or spondylarthritis, and con-

current use of methotrexate or systemic corticosteroids. The latter

variables (use of proton pump inhibitors and onwards) were intended

to reflect markers of long‐term NSAID use. Based on estimated

parameters, observed covariates and date of last NSAID dispensing

before the index date, we calculated the probability of being exposed

on their index date for each case and control. Apart from choice

of ibuprofene, which accounts for about 60% of the total sales,

we did not incorporate the chosen NSAID substance in the model.

• In a final, reduced model, we only included the covariates that

reached statistical significance in the previous model: sex, age,

dispensed quantity, and concurrent use of methotrexate or

systemic corticosteroids. This model was included to examine

how much of the predictive ability was lost by exclusion of appar-

ently unimportant predictors (ie, by omission of use of ibuprofene,

concurrent use of proton pump inhibitors, and a diagnosis of

rheumatoid arthritis, psoriasis arthritis, or spondylarthritis).

In all three continuous models, the probability of being exposed

was set to zero, when no NSAID dispensings had ever been observed

for a subject. A dedicated Stata package for estimating the exposure

probability by any of these models (wtdttt) can be downloaded from

the IDEAS repository (http://ideas.repec.org) and may be installed in

Stata using a search for the package name, ie, –search wtdttt, all–.

2.3 | Data analysis

By using conditional logistic regression, we estimated the crude and

adjusted ORs with 95% confidence intervals (CIs) for the association

between use of NSAIDs and UGIB. Confounding by age, sex, and calen-

dar time was accounted for by the matching and conditional analysis.

For the adjusted ORs, the following potential confounders were

included: (1) current use of the following drugs: vitamin K antagonists,

aspirin, other antiplatelet drugs, dipyridamol, beta‐blockers, selective

serotonin reuptake inhibitors, systemic corticosteroids, proton pump

inhibitors, H2 receptor antagonists, statins, nitrates, spironolactone,

calcium antagonists, and bisphosphonates; (2) any history of the

following events: previous UGIB, Helicobacter pylori eradication, peptic

ulcer, chronic obstructive pulmonary disease, diabetes, ischemic heart

disease, heart failure, stroke, hypertension, inflammatory bowel dis-

ease, malignant disease, and renal failure; and (3) prescription or diag-

nosis markers of smoking or excessive alcohol consumption. For all

drugs used as covariates, current drug use was defined by the redeem-

ing of a prescription within less than 120 days before the index date.

We used the upper/lower confidence limit ratio (ULCLR) of the

adjusted OR as a measure of statistical precision in all analyses. This

is equivalent to considering the magnitude of the standard error on

the log‐odds scale, which is a measure of statistical efficiency.

To describe the relationship between dichotomous and continu-

ous exposure measures, we calculated selected percentiles of the

exposure probability for the simple WTD model, the full‐model

multivariable WTD, and the reduced‐model multivariable WTD for

persons, who were deemed either exposed or unexposed by each of

the conventional exposure methods. For subjects deemed exposed

according to conventional binary measures, we calculated the 25, 50,

and 75 percentiles, and for unexposed, the 90, 95, and 99 percentiles.

For subjects deemed unexposed by conventional binary measures, the

probabilities of exposure according to the WTD models were generally

quite low, and describing their distribution by the 25, 50, and 75

percentiles would be uninformative.

As an aid in interpreting the main results, we also characterized

the association between NSAID use and UGIB as a function of the time

since last NSAID prescription. In this analysis, we categorized all cases

and controls with respect to their time since last prescription in 10‐day

intervals. For a given time‐band, say 70 to 79 days, we included only

cases and controls who had either no prescriptions within the latest

year (reference) or had their latest prescription exactly within the

interval of 70 to 79 days before the index date. All others were

disregarded when analyzing this particular time‐band. A conventional

crude analysis was then performed on this restricted material. As the

same reference was used for all analyses, the ORs generated for each

time‐band are mutually comparable. Some of the strata were quite

thin, and we thus refrained from including other covariates than

NSAID use in this analysis. The effects of age, sex, and calendar time

were handled by the matching.

For information on codes (ICD10 and ATC) used to define the

covariates, see Appendix S1. We used Stata v 14 for all analyses.

According to Danish law, review by an ethics committee is not

required for purely register‐base studies.7

3 | RESULTS

We identified 3571manually validated cases and 35 582 controls. Their

median age was 75 (interquartile range, 64‐83), and 50.7% were male.

All included comorbidities and currently used drugs were more com-

mon among cases than controls, as was the use of ulcerogenic medi-

cations (Table 1). For cases, 2610 (73%) were ever‐users of NSAIDs,

while corresponding figures for controls were 21 740 and 61%.

The results of the regression analyses are shown inTable 2. For all

conventional approaches, the OR was higher with a short exposure

period assigned to each prescription than with a long. Short exposure

periods were also associated with lower counts of exposed cases and

controls, and with wider confidence intervals for the OR (i.e. higher
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ULCLR). The narrowest confidence intervals were found for the

probabilistic exposure measures (ULCLR range 1.46–1.50 vs

1.62–5.06 for the dichotomous exposure measures). There was little

difference between ORs generated by the 3 probabilistic measures

(ORs, 4.37‐4.75).

The relationship between dichotomous and continuous exposure

measures is demonstrated in Table 3. As expected, the conventional

measures that assumed a quick intake of the dispensed medication

(eg, 30‐day fixed window) had high values for the probabilistic

exposure measures, indicating a high positive predictive value.

However, the values were also fairly high for the unexposed, indicating

that a person who was deemed unexposed by assuming a 30‐day

window had a substantial probability of being exposed according to

the probabilistic model, ie, a low sensitivity for the 30‐day window.

There was very little difference between the probabilities from the full

multivariable probabilistic model, compared to the reduced model.

The temporal pattern of the OR, relative to the time since last

NSAID prescription is demonstrated in Figure 1. As can be seen,

the OR quickly decreases, starting at 7.6 (CI, 6.8‐8.6) for day 1 to

9, reaching 1.7 (CI, 1.3‐2.3) at the interval 90 to 99 days and 1.4

(CI, 0.9‐2.1) at 180 to 189 days.

4 | DISCUSSION

The 3 analyses with probabilistic exposure measures produced ORs

almost as high as the highest dichotomous analyses and with more nar-

row confidence intervals. While it is a relevant benchmark for compar-

ison of exposure definition to consider the strength of the estimated

effect of NSAIDs on UGIBs—increasing misclassification dilutes the

association—the width of confidence intervals must also be consid-

ered. A possible downside of the probabilistic model is its complexity,

but this is to some extent mitigated by the observation that complex

multivariable models did not perform better than simpler models. In

addition, we have published a Stata package to aid its implementation.

Our rationale for using a continuous probability of exposure was

to reduce the error caused by nondifferential misclassification. We

would thus expect the continuous measures to produce high ORs.

Our results did confirm this, although a few of the ORs produced by

conventional exposure measures were higher. This should, however,

not be viewed as a failure of our rationale. As shown in Figure 1, there

is a strong dependency of the OR on the time since last NSAID pre-

scription, above and beyond what can be explained by a decreasing

likelihood of being exposed. This time dependency in OR may be

explained by depletion of susceptibles8 or possibly by a genuine bio-

logic adaptation towards NSAID exposure.9 With depletion of suscep-

tibles, subjects who have had the outcome of interest are continuously

removed from the population of drug users, whereby a selected group

that is tolerant to the adverse drug effect remains.10 Thereby, expo-

sure measures that only categorize the subjects as exposed the first

few days after a new prescription, eg, by using a short fixed time win-

dow or assuming a high daily intake, are likely to produce high ORs.

However, these extreme exposure measures, which by all accounts

are unrealistic in our setting, all have fewer exposed subjects and

thereby considerably less precision. If the objective is to establish an

association, our continuous measures seem more attractive, as they

tended to produce fairly high ORs, but with much more narrow confi-

dence intervals than the dichotomous exposure measures.

One limitation of our study is the time dependency of the associ-

ation, which renders our interpretation difficult. However, examples

with immediate, transient effect, strong associations, and low level of

time dependency are difficult to find. The time dependency has a

strong component of depletion of susceptibles, which again is

explained by the mere presence of variability in sensitivity of treated

subjects towards the adverse outcome. It is difficult to think of exam-

ples of adverse drug reactions without between‐subject variability in

sensitivity. Thus, time dependency of OR for a transient effect while

being treated is almost universal. Another limitation is that we did

not have data on actual daily dose of NSAID, which is likely both a

TABLE 1 Characteristics of cases and controls

Cases
n = 3568

Controls
n = 35 552

Demographics

Age, median (IQR) 75 (64‐83) 75 (64‐83)

Male sex 1811 (50.7%) 18 029 (50.7%)

Current drug use

VKA 183 (5.1%) 823 (2.3%)

ASA 696 (19.5%) 3436 (9.7%)

Other antiplatelet drugs 197 (5.5%) 782 (2.2%)

SSRI 429 (12.0%) 2038 (5.7%)

Systemic corticosteroids 384 (10.8%) 1638 (4.6%)

PPI 521 (14.6%) 2037 (5.7%)

H2 receptor antagonists 294 (8.2%) 958 (2.7%)

Statins 237 (6.6%) 1572 (4.4%)

Nitrates 318 (8.9%) 1678 (4.7%)

Spironolactone 208 (5.8%) 599 (1.7%)

Calcium antagonists 588 (16.5%) 3829 (10.8%)

Bisphosphonates 70 (2.0%) 439 (1.2%)

History of

UGIB 95 (2.7%) 175 (0.5%)

HP eradication 160 (4.5%) 467 (1.3%)

Peptic ulcer 218 (6.1%) 535 (1.5%)

COPD 256 (7.2%) 1044 (2.9%)

Diabetes 404 (11.3%) 2167 (6.1%)

Ischemic heart disease 867 (24.3%) 5272 (14.8%)

Heart failure 279 (7.8%) 1164 (3.3%)

Stroke 353 (9.9%) 1835 (5.2%)

Hypertension 412 (11.5%) 1863 (5.2%)

Inflammatory bowel disease 23 (0.6%) 107 (0.3%)

Malignant disease 244 (6.8%) 1711 (4.8%)

Renal failure 94 (2.6%) 205 (0.6%)

Alcohol‐related markers 166 (4.6%) 336 (0.9%)

Tobacco‐related markers 1148 (32.1%) 8364 (23.5%)

Abbreviations: ASA, acetylsalicylic acid; COPD, chronic obstructive pulmo-
nary disease; HP, Helicobacter pylori; IQR, interquartile range; PPI, proton
pump inhibitor; SSRI, selective serotonin reuptake inhibitor; UGIB, upper
gastrointestinal bleeding; VKA, vitamin K antagonist.

Cases with severe upper gastrointestinal bleeding in Funen County
1999‐2006, with their controls, matched by sex and birthyear.
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determinant of the outcome and related to the interval between dis-

pensings, ie, the continuous exposure probability. Unfortunately, the

prescribed dose is not recorded in our data source. As a crude proxy,

we have incorporated the dispensed quantity in the multivariable

dichotomous exposure models, assuming that persons with high doses

also have large quantities dispensed.

In our application, we have assigned treatment probabilities based

on the last observed redemption before the index date, and by assum-

ing that the subsequent inter‐arrival time to the next redemption is a

randomly chosen one. For both cases and controls, this is, however,

not likely to be the case, but for different reasons. For controls, the

index date is evidently chosen independently of their prescription

renewal dates. Consequently, the intercepted interval will suffer from

length bias, since index dates will have a higher probability of hitting

longer inter‐arrival times between prescriptions. For cases, index date

and date of last prescription are in contrast very likely to be dependent,

in particular when the risk of UGIBs varies with time since treatment

initiation with NSAIDs. The use of covariates to model the inter‐arrival

distribution can be expected to reduce the impact of this, but we did

not seemajor differences betweenmodels with andwithout covariates.

Our approach is not the only example where likelihood of exposure

is used as input for a regression. In some variants of the instrumental

variable technique, the “instrument” may represent a preference for

treating patients with a given drug. This preference is a determinant

of exposure without any independent effect on the outcome.11

However, in an instrumental variable analysis, the actual exposure

data are deliberately left out of the regression. Unlike our approach,

instrumental variable analysis often results in a substantial loss of preci-

sion, because the association between instrument and exposure is

weak.12 Furthermore, the purpose of an instrumental variable approach

is to deal with confounding, not misclassification as in our approach.

In reality, patients are on any given day treated or not depending

on whether they took the drug that day. Unfortunately, this true status

is not observable in pharmacoepidemiologic databases. It has therefore

been a standard endeavor in pharmacoepidemiology to emulate this

status from prescription data, although with mixed results and little

consensus on optimal strategies. As our results show, the estimated

risk varies considerably with the definition used to classify treatment

status. In a sense, the approach we have suggested here is more

pragmatic. Using the reverse WTD, we are able to estimate the inter‐

arrival distribution of time between 2 subsequent redemptions of

users in continued treatment. We then interpret one minus this

cumulative distribution function as the probability of a patient still

being treated. Just after a prescription redemption, this yields a

TABLE 2 Crude and adjusted OR for an association between NSAID use and severe upper gastrointestinal bleeding, according to different
exposure definitions

Exposure
Definition

Exposure
Probability,
Cases

Exposure
Probability,
Controls

Crude OR
(95% Confidence
Interval)

Adjusted ORb

(95% Confidence
Interval)

Upper/Lower Confidence
Limit Ratio for
Adjusted OR

Dichotomous exposure

Fixed window

30 d 45.0% 10.8% 7.06 (6.17‐8.06) 5.17 (2.40‐11.11) 4.62

60 d 52.4% 16.3% 5.78 (5.16‐6.47) 5.13 (2.75‐9.55) 3.47

90 d 55.3% 20.3% 4.96 (4.46‐5.51) 4.73 (2.72‐8.23) 3.02

120 d 56.5% 22.9% 4.44 (4.01‐4.91) 3.64 (2.14‐6.18) 2.89

Fixed daily intake

1.5 DDD/d 41.5% 9.1% 7.42 (6.42‐8.57) 6.48 (2.88‐14.57) 5.06

1.0 DDD/d 47.8% 11.9% 6.90 (6.08‐7.83) 5.95 (3.02‐11.71) 3.88

0.5 DDD/d 52.9% 16.7% 5.75 (5.14‐6.44) 2.78 (1.77‐4.37) 2.47

0.2 DDD/d 56.6% 23.2% 4.43 (4.00‐4.90) 1.49 (1.16‐1.93) 1.67

Simple WTD model

0.75 56.0% 21.5% 4.75 (4.28‐5.26) 4.26 (2.49‐7.28) 2.92

0.80 56.5% 22.8% 4.47 (4.03‐4.95) 3.72 (2.18‐6.33) 2.90

0.85 57.2% 24.3% 4.17 (3.77‐4.60) 1.64 (1.19‐2.27) 1.90

0.90 58.1% 26.3% 3.90 (3.54‐4.30) 1.36 (1.07‐1.72) 1.62

Continuous treatment probability

Simple model 0.057 (<0.001‐0.915)a <0.001 (<0.001‐0.027)a 6.77 (6.16‐7.45) 4.75 (3.88‐5.83) 1.50

Full multivariable model 0.037 (<0.001‐0.903)a <0.001 (<0.001‐0.014)a 6.99 (6.35‐7.69) 4.37 (3.62‐5.28) 1.46

Reduced multivariable model 0.038 (<0.001‐0.895)a <0.001 (<0.001‐0.014)a 6.98 (6.34‐7.68) 4.46 (3.69‐5.39) 1.46

Abbreviations: DDD, defined daily dose; NSAID, nonsteroidal anti‐inflammatory drug; OR, odds ratio; WTD, waiting time distribution.

Case‐control study of 3568 cases and 35 552 controls. See text for technical description of exposure definitions.
aMedian and interquartile range for ever‐users of NSAIDs.
bAdjusted for current use of the following drugs: vitamin K antagonists, aspirin, other antiplatelet drugs, dipyridamol, beta‐blockers, selective serotonin
reuptake inhibitors, systemic corticosteroids, proton pump inhibitors, H2 receptor antagonists, statins, nitrates, spironolactone, calcium antagonists,
bisphosphonates, any history of the following events, non‐variceal upper GI bleeding, Helicobacter pylori eradication, peptic ulcer, chronic obstructive
pulmonary disease, diabetes, ischemic heart disease, heart failure, stroke, hypertension, inflammatory bowel disease, malignant disease, renal failure; and
prescription or diagnosis markers of smoking or excessive alcohol consumption.
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probability of one, whereas it approaches zero, when sufficient time

has passed that all patients in continued treatment would have

renewed their prescription. For treatments such as NSAIDs, this

assignment of probability may not be optimal in the sense that some

patients may use all pills of a redeemed prescription and then stop,

whereas others with the same time between redemptions may have

been treated periodically in between them. However, we do not think

the data allows us to make such distinctions.

We have argued that our approach is attractive as it theoretically

bypasses the need for binary classification of exposure. This can be

expected to reduce misclassification and thereby reduce an element

of conservative bias. We have applied it to an empirical case,

essentially producing what we had expected. However, some

uncertainties remain that could be the focus of future research. First,

our model's coverage is unknown and, given the time dependency of

the outcome, difficult to conceptualize. It would thus seem obvious

to test our approach in a simulation study, where, for example, we

could specify no time dependency. Second, it is conceivable that both

exposure and outcome could be modeled in the same procedure,

thereby eliminating some of the variability emerging from first devel-

oping an exposure model and then carrying the result of this into an

outcome model. Again, a simulation study with its full control over

specifications would seem attractive. Finally, we would need more

empirical experience with our probabilistic exposure model to eventu-

ally be able to establish its place in the pharmacoepidemiological

armamentarium.
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TABLE 3 Distribution of estimated exposure probability among subjects who are classified as exposed, according to simple dichotomous criteria

Continuous Treatment Probability,
Simple Model

Continuous Treatment Probability,
Full Multivariable Model

Continuous Treatment Probability,
Reduced Multivariable Model

Exposeda Unexposedb Exposeda Unexposedb Exposeda Unexposedb

Fixed window

30 d 0.985 (0.926‐0.999) 0.350 (0.062‐0.760) 0.976 (0.876‐0.999) 0.295 (0.036‐0.864) 0.974 (0.870‐0.999) 0.296 (0.036‐0.861)

60 d 0.915 (0.732‐0.995) 0.125 (0.015‐0.394) 0.905 (0.640‐0.994) 0.073 (0.008‐0.560) 0.900 (0.635‐0.994) 0.074 (0.008‐0.557)

90 d 0.829 (0.509‐0.985) 0.043 (0.005‐0.203) 0.803 (0.426‐0.982) 0.023 (0.003‐0.314) 0.806 (0.424‐0.981) 0.024 (0.003‐0.313)

120 d 0.760 (0.367‐0.980) 0.020 (0.003‐0.104) 0.717 (0.289‐0.971) 0.011 (0.002‐0.189) 0.713 (0.292‐0.968) 0.011 (0.002‐0.186)

Fixed daily intake

1.5 DDD/d 0.985 (0.904‐1.000) 0.475 (0.095‐0.953) 0.990 (0.947‐1.000) 0.396 (0.054‐0.854) 0.989 (0.946‐1.000) 0.393 (0.054‐0.849)

1.0 DDD/d 0.968 (0.802‐0.999) 0.310 (0.045‐0.892) 0.967 (0.869‐0.999) 0.218 (0.024‐0.716) 0.964 (0.865‐0.999) 0.216 (0.025‐0.700)

0.5 DDD/d 0.904 (0.621‐0.995) 0.128 (0.014‐0.732) 0.899 (0.642‐0.993) 0.068 (0.008‐0.485) 0.895 (0.637‐0.993) 0.069 (0.008‐0.478)

0.2 DDD/d 0.746 (0.303‐0.975) 0.029 (0.003‐0.394) 0.708 (0.271‐0.969) 0.013 (0.002‐0.205) 0.698 (0.273‐0.967) 0.013 (0.002‐0.204)

Simple WTD

0.75 0.802 (0.433‐0.980) 0.031 (0.004‐0.150) 0.764 (0.362‐0.977) 0.017 (0.002‐0.251) 0.762 (0.360‐0.976) 0.017 (0.002‐0.247)

0.80 0.774 (0.367‐0.980) 0.022 (0.003‐0.109) 0.723 (0.295‐0.971) 0.012 (0.002‐0.190) 0.721 (0.297‐0.969) 0.012 (0.002‐0.187)

0.85 0.718 (0.296‐0.975) 0.013 (0.002‐0.069) 0.658 (0.214‐0.963) 0.008 (0.001‐0.136) 0.652 (0.211‐0.961) 0.007 (0.001‐0.135)

0.90 0.635 (0.212‐0.961) 0.007 (0.001‐0.049) 0.573 (0.136‐0.950) 0.004 (0.001‐0.077) 0.566 (0.135‐0.947) 0.004 (0.001‐0.080)

Comparison of simple continuous treatment probability (CTP) model, full multivariable CTP model, and reduced multivariable CTP model. The reported
median for exposed with a 30‐day fixed window of 0.985 for the simple CTP means that among all with a redemption within 30 days before the index date,
the median probability of being exposed is 98.5% when predicted from the simple WTD model. Among the corresponding unexposed the 95‐percentile of
0.350 means that among subjects without a redemption in the last 30 days before the index date, 95% had a predicted probability of being treated smaller
than 35%.
aMedian and interquartile range.
b95‐, 90‐ and 99‐percentile.

FIGURE 1 Dependency of odds ratio for
upper gastrointestinal bleeding as a function
of time since last NSAID prescription and the
corresponding treatment probability function.
Based on 3568 cases and 35 552 controls,
sampled from Funen County, Denmark. The
dashed lines indicate the 95% confidence
intervals for the odds ratio. Curves are aligned
visually so that they have the same height and
that a treatment probability of 0 corresponds
to an odds ratio of 1
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