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and M. Alan Brookhart

Background: Adjusting for large numbers of covariates ascertained
from patients’ health care claims data may improve control of
confounding, as these variables may collectively be proxies for
unobserved factors. Here, we develop and test an algorithm that
empirically identifies candidate covariates, prioritizes covariates,
and integrates them into a propensity-score-based confounder ad-
justment model.
Methods: We developed a multistep algorithm to implement high-
dimensional proxy adjustment in claims data. Steps include (1)
identifying data dimensions, eg, diagnoses, procedures, and medi-
cations; (2) empirically identifying candidate covariates; (3) assess-
ing recurrence of codes; (4) prioritizing covariates; (5) selecting
covariates for adjustment; (6) estimating the exposure propensity
score; and (7) estimating an outcome model. This algorithm was
tested in Medicare claims data, including a study on the effect of
Cox-2 inhibitors on reduced gastric toxicity compared with nonse-
lective nonsteroidal anti-inflammatory drugs (NSAIDs).
Results: In a population of 49,653 new users of Cox-2 inhibitors or
nonselective NSAIDs, a crude relative risk (RR) for upper GI
toxicity (RR � 1.09 �95% confidence interval � 0.91–1.30�) was
initially observed. Adjusting for 15 predefined covariates resulted in
a possible gastroprotective effect (0.94 �0.78–1.12�). A gastropro-
tective effect became stronger when adjusting for an additional 500
algorithm-derived covariates (0.88 �0.73–1.06�). Results of a study
on the effect of statin on reduced mortality were similar. Using the
algorithm adjustment confirmed a null finding between influenza
vaccination and hip fracture (1.02 �0.85–1.21�).
Conclusions: In typical pharmacoepidemiologic studies, the pro-
posed high-dimensional propensity score resulted in improved effect
estimates compared with adjustment limited to predefined covari-

ates, when benchmarked against results expected from randomized
trials.

(Epidemiology 2009;20: 512–522)

Large health care utilization databases are frequently used
to estimate the causal effect of prescription drugs on

health outcomes.1 Health care utilization data reflect routine
practice, are large enough to study rare drug effects, and
avoid the delays common in the collection of primary data.2,3

Despite their importance, studies of pharmacoepidemiologic
claims data have been criticized for the incompleteness of
information on potential confounders such as markers of
clinical disease severity, laboratory results, functional status,
body mass index, smoking status, and over-the-counter med-
ication use. Such factors may lead to selective prescribing,
which may in turn result in biased estimates of the association
between drugs and health outcomes.4 Longitudinal claims
data contain information about patient health status and
confounding beyond what is normally used in pharmacoepi-
demiologic research. We have explored the utility of this
additional information with the help of a computer algorithm
examining all health care claims data.

PROXY ADJUSTMENT
Longitudinal health care claims data can be understood

and analyzed as a set of proxies that indirectly describe the
health status of patients. This status is presented through the
lenses of health care providers recording their findings and
interventions via coders and operating under the constraints
of a specific health care system.5 Quite often, several levels of
proxies, which we call chains of proxies, are involved. For
example, the health state of a patient can be assessed through
(a) the dispensing of a drug that was (b) prescribed by a
physician who made a diagnosis in a (c) patient who came
forward for medical care, and (d) presented certain symptoms
(Fig. 1). Such a chain of proxies is influenced by access to
care,6 severity of the condition, diagnostic ability of the
physician, preference for one drug over another,7 the patient’s
ability to pay the medication copayment,8 and the accurate
recording of the dispensed medication. Here, the chain of
proxies leads to a reasonable interpretation that the patient

Submitted 27 May 2008; accepted 23 September 2008.
From the Division of Pharmacoepidemiology and Pharmacoeconomics, De-

partment of Medicine, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA.

Supported by the National Institute of Mental Health grant (RO1-
MH078708); and the National Institute on Aging grant (RO1-AG021950,
RO1-AG023178, RO1-AG018833, and K25-AG027400).
Supplemental digital content is available through direct URL citations in
the HTML and PDF versions of this article (www.epidem.com).

Editors’ Note: A commentary on this article appears on page 521.
Correspondence: Sebastian Schneeweiss, Division of Pharmacoepidemiol-

ogy and Pharmacoeconomics, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, 1620 Tremont St. (suite
3030), Boston, MA 021205. E-mail: schneeweiss@post.harvard.edu.

Copyright © 2009 by Lippincott Williams & Wilkins
ISSN: 1044-3983/09/2004-0512
DOI: 10.1097/EDE.0b013e3181a663cc

Epidemiology • Volume 20, Number 4, July 2009512 | www.epidem.com

http://www.epidem.com


indeed had a condition that troubled the patient enough to see
the physician, and that was severe enough for the physician to
treat and for the patient to pay a copayment for the medica-
tion. Medical evidence and treatment options were weighed
in several steps along the way. These are not observable in
claims data, but collectively they resulted in a measurable
action.

The measured action in this case had a clear interpre-
tation—the prescribed medication addressed a specific con-
dition—but such interpretations are not always possible. In
fact, we cannot determine the exact interpretation in most
cases but, at the same time, an exact interpretation is not
required for effective confounder adjustment. For example,
old age serves a proxy for comorbidity, frailty, cognitive
decline, and many other factors. Adjusting for a perfect
surrogate of an unmeasured factor is equivalent to adjusting
for the factor itself.9 The degree to which a surrogate is
related to an unobserved or imperfectly observed confounder
is proportional to the degree to which adjustment can be
achieved.10,11

If we could measure a battery of proxies, we would
increase the likelihood that in combination they are a good
overall proxy for relevant unobserved confounding factors.
Using a large number of proxy covariates for propensity score
estimation and then estimating the average causal treatment
effect conditional on deciles of the propensity score may
result in improved control for confounding in epidemiologic
studies of treatment effects using claims data compared with
models that have fewer covariates. Some authors have ex-
plored the use of very large propensity score models in

nonrandomized assessment of treatment effects.12,13 In some
studies, large propensity score models resulted in better
control of confounding than estimating the propensity score
with fewer covariate information.14,16 A major challenge
remains, however, to identify a very large pool of potential
covariates that can be implemented in claims data, and then to
identify which are influential enough in the treatment/disease
relationship to include in an analysis.

We propose an algorithm that identifies a large number
of covariates in claims databases, eliminates covariates with
very low prevalence and minimal potential for causing bias,
and then uses propensity score techniques to adjust for a large
number of target covariates. The approach will be illustrated
using 2 pharmacoepidemiologic studies of intended treatment
effects in elderly patients, including (a) statin use and reduced
risk of death and use of selective Cox-2 inhibitors and
reduced risk of GI complications, and (b) influenza vaccina-
tion and hip fractures with an expected null association.

METHODS
We describe a generic algorithm that identifies a large

number of target covariates in claims databases and selects
covariates for propensity score adjustment to minimize resid-
ual confounding. We present 7 steps to achieve high-dimen-
sional propensity score adjustment using health care claims
databases. These steps assume that the cohort, exposure, and
outcome have already been defined.
1. Specify Data Sources. A wide range of databases of health
care utilization data (claims) is available for use in pharmaco-
epidemiology.3 Each database is arranged in specific ways
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using a variety of classifications to code diagnoses (eg,
International Classification of Diseases �ICD�-8 through ICD-
10), procedures (eg, Current Procedural Terminology, Cana-
dian Classification of Procedures, ICD-9-Clinical Modifica-
tion), or medications (eg, National Drug Codes, American
Hospital Formulary Services, Anatomic Therapeutic Chemi-
cal Classification). Beyond these basic data dimensions and
coding systems, many more data dimensions can be found in
such databases. Some databases provide additional dimen-
sions such as laboratory results, other electronic medical
record information, and accident registries.

We propose an algorithm that is independent of the
specific data source as long as the source’s data dimen-
sions can be identified. In Figure 2, we provide a flow
diagram using a typical example of data dimensions avail-
able in US Medicare claims data linked to medication use
data. First, a temporal window must be defined in which
baseline covariates will be identified. A frequent choice is
6 or 12 months preceding the initiation of the study or
comparison drug.2 The recording of diagnoses and proce-
dures is correlated with the frequency of health care
encounters. Therefore, longer baseline periods increase the
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weighted.
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FIGURE 2. Flow chart for a basic high-dimensional propensity score algorithm.
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number of encounters and therefore yield more covariate
information.2

The most basic patient information always available to
typical databases is age, sex, and calendar time. We assume
that given their ubiquity, these demographic covariates will
always be adjusted for.

Additional covariates can then be identified from the
various data dimensions, but it is first necessary to identify
variables that should not be part of covariate adjustment.
Although it is generally recommended to include many co-
variates in a propensity score regression model, in specific
cases researchers may exclude variables from covariate ad-
justment.17 Surrogates for the exposure that are strong cor-
relates of the study exposure but not associated with the
outcome will not only increase standard errors but may also
increase bias—and should, therefore, not be included in
propensity score analyses.18,19 Bias can also occur through
the inclusion of so-called “collider” variables, although this
bias is generally thought to be weak.20,21 In our example
study comparing statin initiation with glaucoma drug initia-
tion, diagnostic codes for glaucoma should not be included in
a propensity score because of their close correlation with
treatment choice but not with the outcome other than
through treatment.22 At this stage of the procedure, such
codes can be identified and removed from the dimension
data input to the algorithm. We have developed a screening
tool for such covariates as part of the algorithm that will
help investigators identify and remove such covariates
(eAppendix 1, http://links.lww.com/A1043).
2. Identify Candidate Empirical Covariates. Within each of p
data dimensions (eg, outpatient diagnostic ICD codes, inpa-
tient procedure codes, and drugs dispensed) codes were
sorted by their prevalence. Prevalence was measured as the
proportion of patients having a specific code at least once
during a 6-month baseline period. Since the prevalence of a
binary factor is symmetrical around 0.5, we subtracted all
prevalence estimates larger than 0.5 from 1.0. The top n most
prevalent codes were identified as candidate empirical covari-
ates. If fewer than 100 patients were identified with a covari-
ate, the covariate was dropped.

The prevalence of each code (and therefore its empir-
ical ranking) depends on the granularity of the coding; ICD-9
codes are hierarchical such that each additional digit provides
more detail of the diagnosis. Considering the fourth or fifth
digit of the ICD-9 code will reduce the prevalence of the code
in the data but may be a better proxy for the underlying
confounder. We initially set the granularity to 3 digits for
ICD-9 data for this illustration, since every system using
ICD-9 records at least 3 digits. Granularity decisions need to
be considered for all data dimensions, including medication
coding. Depending on the application, therapeutic class may
be sufficiently detailed and in other settings individual drugs

or even drug dose or preparations may be required. We chose
the individual drug level for the base-case algorithm.
3. Assess Recurrence. For the top n most prevalent codes in
each data dimension, we assessed how frequently that code
was recorded for each patient during the baseline period. We
divided each code into 3 binary variables: code occurred �1
time, �median number of times, and �75th percentile num-
ber of times. A code that appeared above the 75th percen-
tile number of times would have a “true” value for all 3
recurrence variables. If any of the values were equal, the
variable representing the higher cutpoint was dropped. For
a data structure with p data dimensions, this results in up
to p � n � 3 covariates.
4. Prioritize Covariates. If we now wish to combine infor-
mation from all p data dimensions to reduce the total number
of covariates, we need to consider that the average prevalence
of codes can be quite different among dimensions. From our
experience, prevalence of procedure codes, including codes
for simple office visits, have a higher prevalence than drug
dispensings. Simply combining these tables and picking the
top k prevalent candidate covariates would down-weight the
importance of medication-dispensing in controlling for con-
founding. Further, Brookhart et al20 showed that including
patient characteristics in the propensity score that are associ-
ated with the exposure but not the outcome will increase
variance of the estimator with no improvement in confound-
ing control, and in some situations can actually introduce
confounding. We, therefore, decided to prioritize covariates
across data dimensions by their potential for controlling con-
founding that is not conditional on exposure and other covari-
ates. Because we are exclusively dealing with binary covariates,
the confounded or apparent relative risk (ARR) is a function
of the imbalance in prevalence of a binary confounding factor
among exposed (PC1) and unexposed (PC0) subjects as well
as the independent association between a confounder and the
study outcome (RRCD)23:

ARR � RR �
PC1 �RRCD � 1� � 1

PC0 �RRCD � 1� � 1
, if RRCD � 1

ARR � RR �

PC1 � 1

RRCD

� 1� � 1

PC0 � 1

RRCD

� 1� � 1

, if RRCD � 1

The fraction on the right side of the equation is the
multiplicative bias term, BiasM. We then sorted all p � n �
3 covariates by the magnitude of log (BiasM) in descending
order. We chose multiplicative bias assessment because a
bias term on the absolute risk scale (BiasA � RDCE � RDCD )
would implicitly down-weight the association between a con-
founder and outcome if the outcome event rate is small but the
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prevalence of the exposure high, a typical occurrence in phar-
macoepidemiologic cohort studies. The covariate prioritization
is illustrated for binary variables since our algorithm to generate
target covariates exclusively creates binary variables.
5. Select Covariates. Once this prioritization of covariates
was accomplished, we included the top k covariates from step
4, which could be as large as p � n � 3 when including all
candidate covariates. Our base case settings were p � 8 and
n � 200 resulting in 4800 candidate covariates. We selected
the top k � 500 binary empirical covariates (about 10%) for
inclusion in the propensity score modeling.

In addition to these k binary empirical covariates, we
included covariates that should always be adjusted for if
available, including d binary demographic covariates age,
sex, race (available in Medicare data), and calendar year. In
addition to these, we allowed the investigator to force l
binary, categorical, or numeric predefined covariates into the
propensity score model, based on context knowledge regard-
ing the specific study question.

In a subanalysis, we explored the impact of adjusting
for 2-way interaction terms. Of the k empirical covariates, we
selected the 20 highest priority empirical covariates and
computed multiplicative 2-way interactions among those co-
variates and with the demographic and predefined covariates,
resulting in another (20 � d � l) � (20 � d � l)/2 covariates.
6. Estimate Exposure Propensity Score. Using multivariate
logistic regression, a propensity score was estimated for each
subject as the predicted probability of exposure conditional
on all d � l � k covariates.
7. Estimate Propensity Score-Adjusted Outcome Models. We
grouped subjects into propensity score deciles and used
multivariate logistic regression analyses to model the study
outcome as a function of exposure and indicator terms for
decile of propensity score. In addition to an adjusted estimate,
we computed a standardized mobility ratio (SMR)-weighted
estimate using weights of 1 for subjects in the study drug
group and the odds of the propensity score (PS) for members
of the comparison group (PS/�1– PS�). SMR-weighted esti-
mates provide treatment effect estimates among the treated.
As the output of Step 6 includes each subject’s propensity
score, other ways to use propensity scores in the outcome
estimation may be applied, including matching, inverse prob-
ability of treatment weighting, or modeling the propensity
score as continuous variable.24 The high dimensional propen-
sity score algorithm is implemented as a SAS macro available
at http://www.drugepi.org.

Example Data Sources and Study Cohorts
All 3 study cohorts were drawn from a population of

patients aged 65 years and older enrolled in both Medicare
and the Pennsylvania Pharmaceutical Assistance Contract for
the Elderly (PACE) programs between 1995 and 2002. PACE
is a state pharmaceutical benefits program with incomes
below $14,000 for individuals and below $17,200 for cou-

ples; its data have been frequently used for pharmacoepide-
miologic studies.7,25 All prescription drugs commercially
available in the United States during the study period were
fully covered by PACE, requiring a nominal copayment of
$6. Prescription drug information was assessed based on
pharmacy claims from PACE with detailed and highly accu-
rate information26,27 on drug name, dosage, quantity, and date
of dispensing.

Study Exposures and Outcomes
Example Cohort 1. Initiation of nonselective NSAID use
versus selective Cox-2 inhibitor use was defined if an eligible
beneficiary filled at least one prescription for an NSAID
between 1 January 1999 and 31 December 2002 but did not
use any NSAID during the 18 months prior to the index date.
The index date was the first date an NSAID prescription was
filled.28 The follow-up period included the 180 days after the
initiation of therapy.

The study outcome of severe gastrointestinal (GI) com-
plication was defined as either a hospitalization for GI hem-
orrhage or peptic ulcer disease complications including per-
foration (coded as ICD-9 discharge diagnoses 531�, 532�,
533�, 534�, 535�, or 578� in the first or second position
or a physician service code for GI hemorrhage). These defi-
nitions were validated in 1762 patients in a hospital discharge
database, with a composite positive predictive value (PPV) of
90%.29 We expected to find a moderate protective effect of
Cox-2 inhibitors on GI complications,30–32 which may be
concealed by confounding.33

Example Cohort 2. The initial exposure status of statin use,
nonuse, or comparator drug use as determined from phar-
macy claims was carried forward until censoring after 1 year
or death, whichever came first. We analyzed the extent to
which patients classified as nonusers started statins during
follow-up and how many statin users discontinued use, using
a gap of 90 or more days in addition to the dispensed supply
without statin use as the definition for statin discontinuation.

We then used Medicare claims data to ascertain time to
death. Death information from Medicare records is routinely
cross-checked with Social Security data. Subjects were cen-
sored at the end of 365 days after drug initiation or disen-
rollment from the pharmacy assistance program. We ex-
pected to find a moderate protective effect of statins on
mortality in older adults (RR about 0.85)34 that may be
exaggerated by confounding.35

Example Cohort 3. For the previous examples, we hypothe-
sized protective effects of the drug therapy with confounding
going either toward the null (example 1) or away from the
null (example 2). We added a third example with a strong prior
hypothesis of a null association, based on context knowledge.
This is the relationship between influenza vaccination in elderly
people and the risk of hip fracture. A typical pre-flu season (1
October–31 December 1996) was selected to assess the expo-
sure to influenza vaccine, and the next 4 months (January–April
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1997) were the follow-up period. Patients with prior hip frac-
tures of bisphosphonate use for the treatment of osteoporosis
were excluded. Patients were censored after the occurrence of
the study end point, death, or disenrollment.

Overall Analytic Strategy
To make the comparisons among models that contained a

varying number of covariates as fair as possible, we used the
available covariates for propensity score estimation and then
adjusted the respective outcome models (logistic regression for
examples 1 and 2 and Cox proportional hazard regression for
example 3) for deciles of the estimated propensity score. We
report the numbers of covariates entered into each propensity
score model as well as its c-statistic of model discrimination.

RESULTS
Population characteristics of the 2 sample cohort stud-

ies are presented in Tables 1 and 2. There were 32,042
subjects that initiated selective Cox-2 inhibitors. The 17,611
nonselective NSAID initiators were older and had more
comorbidities and more risk factors for GI complications.
The NSAID initiators had 185 GI complication in 180 days
(1.1%), and the Cox-2 initiators had 367 events (1.2%).
Compared with 14,889 glaucoma drug initiators, the 21,233
initiators of statin therapy were younger, more likely to have
cardiovascular risk factors, have more health care utilization,

and about equal numbers of comorbidities. The statin initia-
tors had 784 deaths in 1 year (3.7%); the glaucoma drug
initiators had 955 deaths (6.4%).

In a traditional multivariable analysis comparing Cox-2
inhibitors and NSAIDs (Table 3), we observed no association
with GI complications (RR � 0.94; 95% confidence interval
�CI�: 0.78–1.12), which was slightly reduced from an unad-
justed RR of 1.09, suggesting that additional adjustment for
residual confounding would move the relative-risk further
towards a protective effect.

Considering statin initiators versus nonstatin using
initiators of glaucoma drugs (Table 4), we observed a
strongly reduced risk of 1-year mortality (RR � 0.80;
0.70 – 0.90), which is closer to the expected results from
RCTs in elderly people then an unadjusted analysis (RR �
0.56), suggesting that additional adjustment for residual
confounding would move the relative risk further toward
the null. In the first 2 example studies, we observed several
trends regarding the performance of the high-dimensional
propensity score algorithms:

1. Adding the high-dimensional propensity scores to the pre-
defined covariates moved the point estimate in the expected
direction (Cox-2 inhibitors toward a more protective effect,
statins toward a less protective effect), consistent with RCT
findings.

TABLE 1. Characteristics of 49,653 Initiators of Selective COX-2 Inhibitors or Nonselective
NSAIDs as Defined During 6 mo Prior to First Medication Use

Initiators of Cox-2
Selective NSAIDs

Initiators of
Nonselective NSAIDs

(n � 32,042) (n � 17,611)
No. (%) No. (%) OR (95% CI)

Age 75 years or older 24,079 (75) 11,496 (65) 1.61 (1.55–1.67)

Female sex 27,528 (86) 14,293 (81) 1.42 (1.35–1.49)

Race

White 30,583 (95) 15,808 (90) 2.39 (2.23–2.57)

Black 1,133 (4) 1,580 (9) 0.37 (0.34–0.40)

Other 326 (1) 223 (1) 0.80 (0.68–0.95)

Charlson comorbidity score �1 24,343 (76) 12,521 (71) 1.29 (1.23–1.34)

Use of 	4 distinct drugs in prior year 24,120 (75) 11,852 (67) 1.48 (1.42–1.54)

	4 physician visits in prior year 22,919 (72) 11,363 (65) 1.38 (1.33–1.44)

Hospitalized in prior year 9,804 (31) 4,591 (26) 1.25 (1.20–1.30)

Nursing home resident 2,671 (8) 996 (6) 1.52 (1.41–1.64)

Prior use of gastroprotective drugs 8,785 (27) 3,600 (20) 1.47 (1.41–1.54)

Prior use of warfarin 4,252 (13) 1,153 (7) 2.18 (2.04–2.34)

Prior use of oral steroids 2,800 (9) 1,373 (8) 1.13 (1.06–1.21)

History of OA 15,549 (49) 5,898 (33) 1.87 (1.80–1.95)

History of RA 1,602 (5) 476 (3) 1.90 (1.71–2.10)

History of peptic ulcer disease 1,189 (4) 426 (2) 1.55 (1.39–1.74)

History of gastrointestinal hemorrhage 551 (2) 196 (1) 1.55 (1.32–1.83)

History of hypertension 23,332 (76) 12,363 (70) 1.14 (1.09–1.18)

History of congestive heart failure 9,727 (30) 4,328 (25) 1.34 (1.28–1.40)

History of coronary artery disease 5,266 (16) 2,603 (15) 1.13 (1.08–1.19)
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TABLE 2. Characteristicsa of 36,122 Initiators of Statin Drugs or Initiators of Glaucoma
Drugs as Defined During 6 mo Prior to First Medication Use

Initiators of
Statinsa

Initiators of
Glaucoma Drugsa

(n � 21,233) (n � 14,889) OR (95% CI)

Demographic variables
Age (years); mean (SD) 75.8 (6.0) 80.4 (6.8) 0.90 (0.89–0.90)
Female sex 17,205 (81.0) 12,329 (82.8) 0.89 (0.84–0.94)
Race

White 19,675 (92.7) 13,355 (89.7) 1.45 (1.35–1.56)
Black 1,319 (6.2) 1,369 (9.2) 0.65 (0.61–0.71)
Other 239 (1.1) 165 (1.1) 1.02 (0.83–1.24)

Cardiovascular conditions
Comorbidity score; mean (SD) 1.9 (2.0) 1.9 (2.1) 1.00 (0.99–1.02)
Prior MI 2,124 (10.0) 478 (3.2) 3.35 (3.03–3.71)
Prior CABG or PTCA 1,627 (7.7) 146 (1.0) 8.38 (7.07–9.94)
Angina 7,828 (36.9) 3,807 (25.6) 1.70 (1.62–1.78)
Atrial fibrillation 2,486 (11.7) 1,872 (12.6) 0.92 (0.87–0.98)
Cardiovascular diagnoses; mean (SD) 4.8 (4.4) 3.5 (3.4) 1.09 (1.08–1.10)
Cardiovascular system symptoms 2,804 (13.2) 1,474 (9.9) 1.39 (1.30–1.48)
Chest pain 7,055 (33.2) 3,664 (24.6) 1.52 (1.45–1.60)
Complications of heart disease 2,774 (13.1) 1,649 (11.1) 1.21 (1.13–1.29)
Conduction disorders 1,311 (6.2) 778 (5.2) 1.19 (1.09–1.31)
Heart failure 6,008 (28.3) 4,349 (29.2) 0.96 (0.91–1.00)
Coronary atherosclerosis 9,550 (45.0) 4,351 (29.2) 1.98 (1.89–2.07)
Diabetes 7,714 (36.3) 4,903 (32.9) 1.16 (1.11–1.22)
Hyperlipidemia 14,984 (70.6) 4,190 (28.1) 6.12 (5.85–6.41)
Hypertension 16,692 (78.6) 10,907 (73.3) 1.34 (1.28–1.41)
Ischemic heart disease 10,680 (50.3) 5,104 (34.3) 1.94 (1.86–2.03)
Palpitations 940 (4.4) 492 (3.3) 1.36 (1.21–1.52)
Peripheral vascular disease 4,991 (23.5) 3,648 (24.5) 0.95 (0.90–0.99)
Stroke, transient ischemic attack 3,781 (17.8) 1,911 (12.8) 1.47 (1.39–1.56)

Other comorbid conditions
Alzheimer disease 785 (3.7) 1,019 (6.8) 0.52 (0.48–0.58)
Cancer 4,907 (23.1) 3,833 (25.7) 0.87 (0.83–0.91)
Depression 1,163 (5.5) 877 (5.9) 0.93 (0.85–1.01)
COPD 3,965 (18.7) 2,825 (19.0) 0.98 (0.93–1.03)
Prior hip fracture (frailty marker) 75 (0.4) 157 (1.1) 0.33 (0.25–0.44)
Osteoporosis (frailty marker) 1,733 (8.2) 1,497 (10.1) 0.80 (0.74–0.86)
Urinary tract infection (frailty marker) 3,251 (15.3) 2,455 (16.5) 0.92 (0.87–0.97)
Renal disease 961 (4.5) 590 (4.0) 1.15 (1.04–1.28)
Parkinson’s disease 233 (1.1) 281 (1.9) 0.58 (0.48–0.69)

Use of medications
No. drugs taken; mean (SD) 7.9 (5.0) 8.2 (5.1) 0.99 (0.99–1.00)
Cardiovascular 17,866 (84.1) 11,477 (77.1) 1.58 (1.50–1.66)
Loop diuretic use 3,561 (16.8) 2,797 (18.8) 0.87 (0.83–0.92)
NSAIDs 6,125 (28.8) 4,748 (31.9) 0.87 (0.83–0.91)
Estrogen 1,174 (5.5) 674 (4.5) 1.23 (1.12–1.36)

Use of health care services
Preventive care 14,580 (67.9) 9,878 (66.3) 1.11 (1.06–1.16)
Hospitalization w/cardiac diagnosis 4,177 (19.7) 1,378 (9.3) 2.40 (2.25–2.56)
Electrocardiogram 13,273 (62.5) 8,589 (57.7) 1.22 (1.17–1.28)
Hospitalization 7,068 (33.3) 4,318 (29) 1.22 (1.17–1.28)
Lab test ordered 14,879 (70.1) 9,715 (65.2) 1.25 (1.19–1.30)
Lipid test ordered 8,554 (40.3) 3,245 (21.8) 2.42 (2.31–2.54)
Nursing home stay 825 (3.9) 855 (5.7) 0.66 (0.60–0.73)
No. office visits; mean (SD) 9.3 (6.3) 9.8 (6.8) 0.99 (0.98–0.99)
With cardiovascular diagnosis 7.8 (7.5) 6.5 (6.9) 1.03 (1.02–1.03)

aNo. (%), except otherwise indicated.
MI indicates myocardial infarction; CABG, coronary artery bypass graft; PTCA, percutaneous transluminal coronary angio-

plasty; COPD, chronic obstructive pulmonary disease.
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2. Results of the high-dimensional propensity score alone were
identical to the second decimal place compared with the
high-dimensional propensity score combined plus predefined
covariates (Models 5 and 5a in Tables 3 and 4). SMR-
weighted propensity score outcome models resulted in effect
estimates of 0.77 (0.67–0.88) for Cox-2 inhibitors and GI
complication, and 0.64 (0.59–0.70) for statins and death.

3. First stage c-statistics quantifying the degree of exposure
prediction did not consistently correlate with the changes
in effect estimates.

4. Including 500 rather than 200 covariates in the high-dimen-
sional PS appeared to move the effect estimate little.

5. More finely granulated diagnostic codes (4 digit ICD-9 vs.
3 digit ICD-9) appeared to move the effect estimate little.

6. Dropping the recurrence assessment appeared to move
effect estimates slightly away from the expected direction.

7. Including 2-way interactions appeared to leave the effect
estimate unchanged or move it slightly away from the ex-
pected direction.

8. Selecting covariates based only on their prevalence without
any further covariate prioritization moved effect estimates
slightly away from the expected direction in the Cox-2
inhibitor example but not in the statin example.

Bootstrapped 95% confidence intervals based on 1000
samples were very similar to the base case algorithm (Model
5) in both example studies (0.73–1.06 in Table 3 and 0.76–
0.98 in Table 4).

TABLE 3. Variations in Covariate Adjustment and Relative Risk Estimates for the Association of Selective Cox-2 Inhibitors and
GI Complications Within 180 days of First Medication Use (n � 49,653)

Model
Covariates Included in
Propensity Score Model

No. Covariates
Adjusted

Variables
Tested per

Data
Source

Data Source
Granularity

Covariate
Prioritization

Algorithm
c-Statistic of

PS Model
Outcome Model

RR (95% CI)

1 Unadjusted - 1.09 (0.91–1.30)

2 Age, sex, race, yeara d � 4 0.61 1.01 (0.84–1.21)

3 � predefined covariates
(Table 1)

d � 4; l � 14 0.66 0.94 (0.78–1.12)

4 � empirical covariates d � 4; l � 14; k � 200 n � 200 3-digit ICD Biasmult 0.69 0.86 (0.72–1.04)

5b � empirical covariates d � 4; l � 14; k � 500 n � 200 3-digit ICD Biasmult 0.71 0.88 (0.73–1.06)

5b Only demographics �
empirical covariates

d � 4; k � 500 n � 200 3-digit ICD Biasmult 0.71 0.87 (0.72–1.05)

6 � empirical covariates d � 4; l � 14; k � 200 n � 200 3-digit ICD Biasadd 0.68 0.87 (0.72–1.05)

7 � empirical covariates d � 4; l � 14; k � 500 n � 200 3-digit ICD Biasadd 0.70 0.87 (0.72–1.05)

8 � empirical covariates d � 4; l � 14; k � 200 n � 200 4-digit ICD Biasmult 0.69 0.89 (0.74–1.07)

9 � empirical covariates d � 4; l � 14; k � 500 n � 200 4-digit ICD Biasmult 0.71 0.85 (0.70–1.03)

10 � empirical covariates d � 4; l � 14; k � 200 n � 200 3-digit ICD,
6-digit AHFSc

Biasmult 0.69 0.87 (0.72–1.05)

11 � empirical covariates d � 4; l � 14; k � 500 n � 200 3-digit ICD,
6-digit AHFSc

Biasmult 0.71 0.87 (0.72–1.06)

12 � empirical covariates
without recurrence
assessment (drop step
3 of hd-PS algorithm)

d � 4; l � 14; k � 200 n � 200 3-digit ICD Biasmult 0.70 0.89 (0.73–1.07)

13 � empirical covariates
without recurrence
assessment (drop step
3 of hd-PS algorithm)

d � 4; l � 14; k � 500 n � 200 3-digit ICD Biasmult 0.71 0.91 (0.75–1.10)

14 � empirical covariates
with 2-way interactions

d � 4; l � 14; k � 200 � 382/2 n � 200 3-digit ICD Biasmult 0.70 0.86 (0.71–1.04)

15 � empirical covariates
with 2-way interactions

d � 4; l � 14; k � 500 � 382/2 n � 200 3-digit ICD Biasmult 0.71 0.90 (0.74–1.09)

16 � empirical covariates
without prioritization
(drop step 4 of hd-PS
algorithm)

d � 4; l � 14; k � 7*100 n � 100 3-digit ICD None 0.71 0.91 (0.75–1.10)

aAge (65–74; 75�); race (white, black, other); year � year of cohort entry (1999, 00–01, 02–03).
bModel 5 represents the Base Case model for a high-dimensional propensity score as outlined in Figure 2.
cThe 6-digit AHFS (American Hospital Formulary Service) code aggregates individual drugs to drug classes, eg beta blockers, ACE inhibitors.
d � number of demographic covariates; l � number of predefined covariates; n � number of variables considered per data source base on prevalence ranking; k � number of

covariates eventually included in the propensity score estimation. hd–PS indicates high-dimensional propensity score.
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For the third example study, on the relationship
between influenza vaccination in seniors and hip fractures,
we expected a null association with strong contextual
support of that null hypothesis. In a cohort of 147,583
patients, 42% received influenza vaccination and we observed
710 hip fractures (0.5%). Due to confounding we observed a
slightly protective effect in an unadjusted analysis (RR � 0.93;
0.80–1.08). After adjustment for demographic factors and the
high-dimensional propensity score, the effect was entirely
explained (RR � 1.02; 0.85–1.21).

DISCUSSION
We hypothesized that high-dimensional proxy adjust-

ment based on propensity score techniques could reduce
residual confounding in claims databases of treatment effects.
To explore this hypothesis, we developed a generic algorithm

that identifies a large number of target covariates and selects
covariates for propensity score adjustment to facilitate high-
dimensional propensity score adjustment. In the example
studies of drug-outcome relationships, we found that the appli-
cation of the high-dimensional propensity score algorithm pro-
duced results closer to the expected findings based on random-
ized trials, compared with propensity score adjustment that uses
a more limited number of investigator predefined covariates. We
further found that some components of the algorithm were more
important than others in our example studies. The covariate
prioritization as well as the assessment and adjustment of recur-
rent coding of health services seem to be important contributors
to the algorithm in our examples.

The algorithm’s main strength rests on the exploitation
of information that is usually untapped in epidemiologic
analyses of health care utilization databases. It also includes

TABLE 4. Variations in Covariate Adjustment and Relative Risk Estimates of the Association of Statin Initiation With 1-year
Mortality (n � 36,122)

Model
Covariates Included in
Propensity Score Model

No. Covariates
Adjusted

Variables
Tested per

Data
Source

Data Source
Granularity

Covariate
Prioritization

Algorithm

c-Statistic
of PS
Model

Outcome Model
RR (95% CI)

1 Unadjusted 0.56 (0.51–0.62)

2 Age, sex, race, yeara d � 4 0.70 0.77 (0.69–0.85)

3 � predefined covariates
(Table 2)

d � 4; l � 42 0.82 0.80 (0.70–0.90)

4 � empirical covariates d � 4; l � 14; k � 200 n � 200 3-digit ICD Biasmult 0.86 0.86 (0.76–0.98)

5b � empirical covariates d � 4; l � 14; k � 500 n � 200 3-digit ICD Biasmult 0.87 0.86 (0.76–0.98)

5b Only demographics �
empirical covariates

d � 4; k � 500 n � 200 3-digit ICD Biasmult 0.86 0.89 (0.78–1.02)

6 � empirical covariates d � 4; l � 14; k � 200 n � 200 3-digit ICD Biasadd 0.85 0.85 (0.75–0.96)

7 � empirical covariates d � 4; l � 14; k � 500 n � 200 3-digit ICD Biasadd 0.86 0.88 (0.77–1.00)

8 � empirical covariates d � 4; l � 14; k � 200 n � 200 4-digit ICD Biasmult 0.85 0.86 (0.76–0.97)

9 � empirical covariates d � 4; l � 14; k � 500 n � 200 4-digit ICD Biasmult 0.87 0.87 (0.76–0.99)

10 � empirical covariates d � 4; l � 14; k � 200 n � 200 3-digit ICD,
6-digit AHFSc

Biasmult 0.86 0.85 (0.75–0.97)

11 � empirical covariates d � 4; l � 14; k � 500 n � 200 3-digit ICD,
6-digit AHFSc

Biasmult 0.87 0.86 (0.75–0.98)

12 � empirical covariates without
recurrence assessment (drop
step 3 of hd-PS algorithm)

d � 4; l � 14; k � 200 n � 200 3-digit ICD Biasmult 0.86 0.83 (0.73–0.950)

13 � empirical covariates without
recurrence assessment (drop
step 3 of hd-PS algorithm)

d � 4; l � 14; k � 500 n � 200 3-digit ICD Biasmult 0.87 0.87 (0.76–1.000)

14 � empirical covariates with
2-way interactions

d � 4; l � 14; k � 200 � 672/2 n � 200 3-digit ICD Biasmult 0.87 0.83 (0.73–0.950)

15 � empirical covariates with
2-way interactions

d � 4; l � 14; k � 500 � 672/2 n � 200 3-digit ICD Biasmult 0.88 0.85 (0.75–0.970)

16 � empirical covariates without
prioritization (drop step 4 of
hd-PS algorithm)

d � 4; l � 14; k � 7*100 n � 100 3-digit ICD None 0.88 0.88 (0.77–1.00)

aAge (65–74; 75�); race (white, black, other); calendar time � year of cohort entry (1995–97, 98–00, 01–02).
bModel 5 represents the Base Case model for a high-dimensional propensity score as outlined in Figure 2.
cThe 6-digit AHFS (American Hospital Formulary Service) code aggregates individual drugs to drug classes, eg beta blockers, ACE inhibitors.
d � number of demographic covariates; l � number of predefined covariates; n � number of variables considered per data source base on prevalence ranking; k � number of

covariates eventually included in the propensity score estimation.
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a variable selection component to limit the number of ad-
justed covariates to an arbitrary number (500 in our base
case) because in theory a number of covariates larger than the
number of study subjects could be generated. Hirano and
Imbens16 have developed a propensity score variable selection
algorithm that is based on comparing the t-statistics of the entire
propensity score regression model (tprop) with those of individ-
ual covariates (tk). Such test-based approaches to variable selec-
tion have been criticized for their dependency on study size and
potential for bias.36 This approach also seems impractical if the
number of candidate covariates is very large (eg, the 4800 in our
example), which can provide a challenge to fitting the entire PS
regression model even in large datasets.

Brookhart et al20 found that the inclusion of variables
that predict only exposure but not outcome can result in larger
standard errors in small studies; if residual confounding
exists, this can increase bias.37,38 These effects were not
evident here, probably because of the large sample size and
the modest associations between individual covariates and
exposure. However, the possibility that an empirically gen-
erated variable could increase bias and variance represents
the primary concern of the algorithm. Users of this method-
ology should remove covariates that are a priori expected to be
strong predictors of exposure but not likely to be related to the
outcome. An example of such a covariate would be the history
of glaucoma as a strong predictor for glaucoma treatment (but
not death) that appeared in our screening tool (eAppendix 1,
http://links.lww.com/A1043) was removed in our second exam-
ple cohort. Further research is needed to consider ways in which
empirically generated claims-based covariates could generate
collider bias, and how they could be identified and removed.

Variable selection techniques may result in falsely
narrow standard errors.39 We therefore applied bootstrapping
to estimate 95% confidence intervals40 and found very similar
confidence intervals compared with the simple logistic re-
gression of the base case algorithm. This is not surprising as
we did not apply any confounder selection algorithms that
resulted in multiple tests of exposure-outcome associations,
including change-in-estimate, forward or backward selection.36

Instead, we did a preliminary screen of candidate confounders
by estimating unconditional associations of individual potential
confounders with the exposure and then separately with the
outcome. We then ranked covariates with regard to their poten-
tial for being a confounder and included these candidate covari-
ates up to a predefined maximum number. We observed fairly
weak unconditional associations of individual factors.

The present study is an empirical comparison of meth-
ods without a true gold standard. We used randomized trial
findings to set specific expectations regarding the treatment
effect estimates, but it ultimately remains unanswerable
whether our high-dimensional propensity score algorithm
reached that goal fully. Simulation studies are unlikely to
clarify the performance of this algorithm because it is inher-

ently empirical and relies on data-generating mechanisms that
will vary from study to study, and thus are difficult to
prespecify. The strength of the high-dimensional propensity
score is rather that it does not make any assumptions about
data quality, quantity, and interpretation. Further validation
of the algorithm is possible by replicating findings that are
expected based on randomized trial findings, including our
example of a null association in which the high-dimensional
propensity score algorithm eliminated all confounding. A
specific point of concern is the performance of a covariate
prioritization strategy that considers the association of each
factor with the study outcome if outcomes are rare. At some
point the prioritization rule may miss potentially important
confounders by chance. While this is a theoretically important
point it needs to be seen in light of the fact that the proposed
high-dimensional proxy adjustment will be used in addition to
adjustment for factors specified by the investigator.

Further work may provide improved ways of selecting
covariates or using the covariates in the analysis. For exam-
ple, optimization of the variable selection algorithm may be
possible by considering the association between the candidate
covariate and the exposure, conditional on either a set of
predefined covariates or the entire list of selected covariates.
It is also possible that algorithms based on cross-validation
could prove to be useful for covariate selection.41,42 Finally,
we have considered the use of selected covariates in an
analysis that depends on correct specification of the propen-
sity score model. Doubly robust approaches are based on an
assumed model of both the exposure and outcome, but are
consistent if only one of the models is correctly specified.18

The use of the selected covariates in the setting of a doubly
robust estimator may improve the performance of the algo-
rithm. However, since the outcome model must be more
parsimonious, a separate list of covariates would need to be
generated for the outcome model—perhaps those with par-
ticularly strong outcome associations.

It is too early to conclude that the proposed algorithm
or variations thereof will be able to substitute for existing
confounder adjustment strategies in claims data analyses,
although in our limited examples the algorithm performed
better than standard techniques. Practical advantages are
that the algorithm can be run efficiently on a large scale, it
reduces investigator and programming time substantially,
and it reduces programming errors and potential mischar-
acterization of covariate definitions or adjustments without
a loss of validity. This last point might be of particular
practical advantage in studies pooling multiple claims
databases.

In conclusion, in some typical pharmacoepidemiologic
studies of treatment effects, the proposed proxy adjustment
via high-dimensional propensity scores generated effect esti-
mates closer to randomized trial findings, compared with
standard covariate adjustment of predefined covariates. Fur-
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ther replication will be necessary in a variety of settings to
assess the value of this approach.
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